

Old Age Module

Other Neurodegenerative Disorders & Dementias

Developing people

for health and

healthcare

www.hee.nhs.uk

Other Neurodegenerative Disorders & Dementias Aims and Objectives

- To overall aim is to gain a basic overview of common dementias including Lewy Body dementia (DLB), Parkinson's disease dementia (PDD) & related disorders, frontotemporal dementia (FTD), and vascular dementia (VaD).
- By the end of the session, the trainee should understand the basic epidemiology, aetiology, clinical presentation and basic management of these forms of dementia.

Other Neurodegenerative Disorders & Dementias To achieve this

- Case Presentation
- Journal Club
- 555 Presentation
- Expert-Led Session
- MCQs
- Please sign the register and complete the feedback

Other Neurodegenerative Disorders & Dementias Expert Led Session

Other Neurodegenerative Disorders & Dementias

Dr Mark Worthington Consultant Older Adult Psychiatrist Lancashire Care NHS Foundation Trust

> Peer reviewed by: Dr Matt Jones

(Adapted from Alzheimer's Society, 2014)

Untreatable causes of dementia

Neurodegenerative	Alzheimer's disease* Lewy Body dementia (DLB) Huntington's disease (HD)* Frontotemporal dementias (FTD)* Parkinson's disease (PD)*	Progressive supranuclear palsy (PSP) Multiple systems atrophy (MSA) Corticobasal degeneration (CBD) Prion diseases (e.g. CJD)* Leucodystrophies*
Vascular	Vascular dementias	CADASIL*
Infective	Progressive multifocal leucoencephalopathy (PML) CJD (prion disease)	Post-encephalitis Sub-acute sclerosing panencephalitis (SSPE)
Traumatic	Dementia pugilistica	
Post-anoxic	Post-surgical (e.g. Cardiac bypass) Carbon monoxide poisoning?	Cardiac arrest
Тохіс	Alcohol? Heavy metals	Organic solvents Organophosphates

Adapted from Hodges JR. Cognitive Assessment for Clinicians

Neurodegenerative diseases - complex pathological overlap!

Kovacs, G.G., 2016. Molecular pathological classification of neurodegenerative diseases: turning towards precision medicine. *International journal of molecular sciences*, *17*(2), p.189.

Three main proteinopathies - a little easier to remember!

Moussaud, S., Jones, D.R., Moussaud-Lamodière, E.L., Delenclos, M., Ross, O.A. and McLean, P.J., 2014. Alpha-synuclein and tau: teammates in neurodegeneration?. *Molecular neurodegeneration*, *9*(1), p.43.

Vascular dementia

Syndrome; spectrum of disorders, not a single diagnosis

Heterogeneity within this syndrome

2nd most common cause dementia– 1 in 20 aged over 65 globally

Risk factors

Vascular cognitive impairment/ dementia

Embolic occlusion

- Multi-infarct
- Strategic infarct
- Post stroke

Hypertensive

• Small vessel disease

Vasculopathy

- CADASIL
- CAA
- Hypo-perfusion
 - Local
 - Global

General findings

Neurological findings: pseudobulbar palsy, brisk tendon reflexes, gait abnormalities, early urinary symptoms

Psychomotor slowing ,abnormal executive functioning, fluctuating confusion

Depression, anxiety, emotional lability

Relatively preserved personality with insight in mild and moderate cases

Vascular dementia

Multiple or single strategic infarcts

Large vessel infarcts should be bilateral or in dominant hemisphere

Lacunar (small subcortical infarcts 3-20mm) infarcts: strategic infarcts (e.g. thalamus) or multiple lesions required. Can be silent or history of TIA/CVA

NINDS-AIREN criteria

NHS Health Education England

Vascular dementia

Small vessel disease (SVD) Damage to small subcortical vessels SVD commonly seen in older individuals Commonest cause of vascular dementia

WMHs – bright on T2 and FLAIR

NINDS-AIREN: >25% of white matter affected

Román, G.C., Tatemichi, T.K., Erkinjuntti, T., Cummings, J.L., Masdeu, J.C., Garcia, J.H., Amaducci, L., Orgogozo, J.M., Brun, A., Hofman, A. and Moody, D.M., 1993. Vascular dementia: diagnostic criteria for research studies: report of the NINDS-AIREN International Workshop. *Neurology*, *43*(2), pp.250-250.

CADASIL

Cerebral autosomal dominant arteriopathy with subcortical infarcts & leucoencephalopathy (CADASIL)

Mutation on NOTCH3 gene

Impairs function and survival of vascular smooth muscle cells Multiple lacunar infarcts and marked white matter disease (widespread leucoencephalopathy)

Migraine, recurrent strokes, affective disorder, seizures, visual problems

Cerebral amyloid angiopathy (CAA)

Deposition of amyloid within blood vessels Risk of haemorrhage and CVA

F>M

Pathology occurs in most AD and older adults without AD – contributes to vascular cognitive impairment / dementia (Esiri, 1997)

Microbleeds on MRI (T_2^*) – haemosiderin leakage

Modified Boston Criteria Knudsen, K.A., Rosand, J., Karluk, D. and Greenberg, S.M., 2001. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. *Neurology*, *56*(4), pp.537-539.

Hypo perfusion

- Localised
 - Small arteriovenous malformation (AVM)
- Global
 - Chronic: low output cardiac failure, large AVM, chronic anaemia, bilateral carotid stenosis
 - Transient: cardiac arrest, carbon monoxide poisoning

Coexistence of different types of pathology

Khan, A., Kalaria, R.N., Corbett, A. and Ballard, C., 2016. Update on vascular dementia. *Journal of geriatric psychiatry and neurology*, *29*(5), pp.281-301.

Advances in Psychiatric Treatment

©2012 by The Royal College of Psychiatrists

Frontotemporal Dementias (FTD)

Epidemiology & aetiology

Pathophysiology

Clinical presentation

Investigations

Treatment

Prognosis

Frontotemporal Dementias

Heterogeneous group of neurodegenerative dementias with selective atrophy of frontal and/or temporal lobes Insidious course; onset typically in 6th decade (21-85 yrs)

Genetic risk factors / familial in many cases (especially behavioural variant FTD) (Onyike & Diehl-Schmid, 2013) Prevalence 15-22 per 100 000 (Onyike & Diehl-Schmid, 2013) M=F

Second most common cause of dementia after AD in people younger than 65 years (Bird, 2003)

Clinical spectrum - behavioural symptoms, progressive aphasia and executive dysfunction, to parkinsonism plus or motor neuron disease

Frontotemporal Dementias - types

Behavioural variant (bvFTD) (~50%)

- Personality & behaviour change
- Hyperorality, altered eating behaviour
- Loss of insight
- Emotional blunting
- Early preservation of memory, visuospatial function

Primary progressive aphasias (PPA) (~50%)

- Exclusively speech and language difficulties for 2 years
- Semantic variant (svPPA)
- Non-fluent variant (nfPPA)
- Logopenic variant (IvPPA) an atypical Alzheimer's rather than FTD

(Gorno-Tempini ML, 2011)

The FTLD syndrome spectrum. (A) Schematic of current diagnostic criteria. (B) Schematic to highlight our hypothesis that FTLD syndromes occur on a spectrum. (C and D) Four-way Venn diagrams of overlap between FTLD syndromes in the study. The numbers in each oval refer to the number of patients who met the diagnostic criteria for those syndromes. Many patients met the diagnostic criteria for two or more syndromes. (C) Overlap between bvFTD, nfvPPA, PSP and CBS. (D) Overlap between bvFTD, nfvPPA, svPPA and lvPPA.

Murley, A.G., Coyle-Gilchrist, I., Rouse, M.A., Jones, P.S., Li, W., Wiggins, J., Lansdall, C., Rodríguez, P.V., Wilcox, A., Tsvetanov, K.A. and Patterson, K., 2020. Redefining the

multidimensional clinical phenotypes of frontotemporal lobar degeneration syndromes. *Brain*, 143(5), pp.1555-1571.

Genetics

- MAPT* (Microtubule-associated protein tau) → inclusions of insoluble hyperphosphorylated tau
- **2. GRN**^{*} (Progranulin gene) \rightarrow inclusions of **TDP43**
- 3. C9ORF72 (Chromosome 9 open reading frame 72) (associated with FTD-MND) → inclusions of TDP43
- 4. VCP (chromosome 9)
- 5. CHMP2B (chromosome 3)

NHS Health Education England

Pathophysiology

Intracellular inclusions of:

- Tau (MAPT mutation), or
- TDP-43 (C9ORF72 / GRN mutations)
- FUS
- UPS

Associated pathological findings:

Pick bodies (tau-reactive intraneuronal inclusions) Pick cells (aka balloon cells)(swollen achromatic neurones) Ubiquitin inclusions (containing TDP-43) Large neuronal cell loss

Alzheimer's pathology in IpvPPA

Clinical presentation bvFTD

For possible bvFTD, three of the following behavioural/cognitive symptoms (A–F) must be present (persistent/recurrent) to meet criteria:

- **A. Early behavioural disinhibition** (e.g. Socially inappropriate behaviour; loss of manners or decorum; Impulsive, rash or careless actions)
- B. Early apathy or inertia
- C. Early loss of sympathy or empathy (e.g. diminished response to other people's needs and feelings, diminished social interest, interrelatedness or personal warmth)
- D. Early perseverative, stereotyped or compulsive/ritualistic behaviour
- E. Hyperorality and dietary changes
- F. Neuropsychological profile: executive/generation deficits with relative sparing of memory and visuospatial functions

Rascovsky, K., Hodges, J.R., Knopman, D., Mendez, M.F., Kramer, J.H., Neuhaus, J., Van Swieten, J.C., Seelaar, H., Dopper, E.G., Onyike, C.U. and Hillis, A.E., 2011. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. *Brain*, *134*(9), pp.2456-2477.

Clinical Presentation

Non fluent variant (nfPPA):

- Effortful non-fluent speech with speech sound errors (speech apraxia)
- Telegraphic; agrammatism
- Affects comprehension of complex sentences

Semantic dementia (svPPA):

- Fluent empty and circumlocutory speech
- Loss of word knowledge; wider agnosias later
- Superordinate word substitutions (e.g. animal for penguin)
- Impaired confrontation naming

Logopenic primary progressive aphasia (IvPPA):

- Word-finding pauses; impaired repetition of phrases
- Spared object and word comprehension

FTD-Motor Neurone Disease(MND)

- MND Amyotrophic Lateral Sclerosis (ALS), Progressive Muscular Atrophy (PMA), Progressive Bulbar Palsy (PBP), and Primary Lateral Sclerosis (PLS)
- Produces progressive weakness, muscular wasting and spasticity, producing death from respiratory failure, median of three years after onset in 50% of patients
- ALS most common form
- most common symptomatology iscognitive change first, followed by weakness

NHS Health Education England

Summary of Mendelian genetics associated with FTLD and the FTLD-ALS spectrum. Genes circled in red are 'major-FTLD genes'; genes circled in violet are 'spectrum-FTLD genes', i.e. they belong to the FTLD-ALS spectrum. Genes circled in dark-violet and blue are edge/borderline between FTLD and ALS and pure ALS genes, respectively. *=not replicated.

(Ferrari, R., Manzoni, C. and Hardy, J., 2019.)

Psychosis and FTD-MND

- FTD, psychosis is a recognized symptom, affecting 32% of patients in the largest autoptically confirmed case series, though psychiatric disturbances are not included in the diagnostic criteria (Landqvist Waldö, M., Gustafson, L., Passant, U., and Englund, E. (2015). Psychotic symptoms in frontotemporal dementia: a diagnostic dilemma? Int. Psychogeriatr. 27, 531–539).
- FTD and schizophrenia differential diagnosis can be a challenge
- Late-onset psychosis should always raise concern for familiality with motor neuron disease and thus warrant genetic testing for c9orf72 repeat expansion

(Sommerlad, A., Lee, J., Warren, J., and Price, G. (2014). Neurodegenerative disorder masquerading as psychosis in a forensic psychiatry setting. BMJ Case)

Investigations

Neuroimaging:

Brian imaging is essential in all suspected cases!

- **bvFTD -** often asymmetric anterior fronto-temporal atrophy (esp. orbitofrontal)
- svFTD asymmetrical anterior temporal lobe atrophy & hypometabolism (usually left-sided)
- **nfvPPA** peri-sylvian atrophy (dominant hemisphere)
- IvPPA FTD left-sided temporoparietal atrophy

EEG: not helpful / no specific findings

Neuroimaging in FTD

Cooper S, Greene J D W J Neurol Neurosurg Psychiatry 2005;76:v15-v24

©2005 by BMJ Publishing Group Ltd

Treatment

No disease modifying treatments

Treatment is largely supportive and symptomatic

Management can be challenging due to age of onset and early loss of insight

Compulsive behaviours may respond to SSRIs (Warren et al, 2013)

Prognosis

Variable dependent on subtype

- Median 7-13 years (Onyike, 2011)
- FTD-MND 2-3 years (Hodges et al, 2003)
- svPPA longer than bvFTD / nfvPPA

Lewy Body Dementia (DLB)

- Epidemiology & aetiology
- Pathophysiology
- **Clinical presentation**
- Investigations
- Treatment
- Prognosis

Lewy Body Dementia (DLB)

Neuropsychiatric syndrome with progressive dementia and parkinsonism

2nd most common neurodegenerative dementia

Prevalence 5% in elderly (Karantzoulis & Galvin, 2013)

DLB pathology in up to 30% of dementias (Zaccai et al, 2005; McKeith et al, 2005)

Symptoms often described as lying between AD and PD

Pathophysiology

Lewy bodies: intracytoplasmic neuronal inclusions of synuclein (as in PD). Characteristic "halo" appearance.

Lewy neurites: abnormal neurites containing granular material and α -synuclein filaments in diseased neurones.

Common to have mix of LB and AD (amyloid) pathology

Presentation / features

Cognitive:

 Early deficits on tests of executive and visuospatial domains > memory

Neuropsychiatric:

- Visual hallucinations: usually detailed; well formed. Typically animals, people (dysmorphic), body parts or machinery (Karantzoulis & Galvin, 2013)
- Delusions (>AD)
- Depression / apathy / misidentification
- Parasomnias e.g. RBD

Fluctuations (in cognition/arousal) – similar to delirium

Presentation / features

Autonomic dysfunction

- Orthostatic hypotension
- Constipation

Severe neuroleptic sensitivity

- 30-50% of DBL patients
- Acute confusion
- Can result in NMS or fatality

New DLB Consensus Diagnostic Criteria Health Education England

Essential

Progressive cognitive decline of interferes with normal social or occupational functions, or with usual daily activities Prominent or persistent memory impairment may not necessarily occur in the early stages but is usually evident with progression. Deficits on tests of attention, executive function, and visuoperceptual ability may be especially prominent and occur early.

Core

Fluctuating cognition with pronounced variations in attention and alertness. Recurrent visual hallucinations that are typically well formed and detailed. REM sleep behavior disorder, which may precede cognitive decline. One or more spontaneous cardinal features of parkinsonism: these are bradykinesia (defined as slowness of movement and decrement in amplitude or speed), rest tremor, or rigidity.

Supportive clinical features

Severe sensitivity to antipsychotic agents; postural instability; repeated falls; syncope or other transient episodes of unresponsiveness; severe autonomic dysfunction, e.g., constipation, orthostatic hypotension, urinary incontinence; hypersomnia; hyposmia; hallucinations in other modalities; systematized delusions; apathy, anxiety, and depression.

Indicative biomarkers

Reduced dopamine transporter uptake in basal ganglia demonstrated by SPECT or PET. Abnormal (low uptake) 123iodine-MIBG myocardial scintigraphy. Polysomnographic confirmation of REM sleep without atonia.

Supportive biomarkers

Relative preservation of medial temporal lobe structures on CT/MRI scan. Generalized low uptake on SPECT/PET perfusion/metabolism scan with reduced occipital activity 6 the cingulate island sign on FDG-PET imaging. Prominent posterior slow-wave activity on EEG with periodic fluctuations in the pre-alpha/ theta range.

McKeith, I.G., Boeve, B.F., Dickson, D.W., Halliday, G., Taylor, J.P., Weintraub, D., Aarsland, D., Galvin, J., Attems, J., Ballard, C.G. and Bayston, A., 2017. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. *Neurology*, *89*(1), pp.88-100.

DLB consensus diagnostic criteria Health Education England

Probable DLB can be diagnosed if:

a. Two or more core clinical features of DLB are present, with or without the presence of indicative biomarkers, or

b. Only one core clinical feature is present, but with one or more indicative biomarkers.

Probable DLB should not be diagnosed on the basis of biomarkers alone.

Possible DLB can be diagnosed if:

a. Only one core clinical feature of DLB is present, with no indicative biomarker evidence, or b. One or more indicative biomarkers is present but there are no core clinical features.

DLB is less likely:

a. In the presence of any other physical illness or brain disorder including cerebrovascular disease, sufficient to account in part or in total for the clinical picture, although these do not exclude a DLB diagnosis and may serve to indicate mixed or multiple pathologies contributing to the clinical presentation, or

b. If parkinsonian features are the only core clinical feature and appear for the first time at a stage of severe dementia.

DLB should be diagnosed when dementia occurs before or concurrently with parkinsonism. The term Parkinson disease dementia (PDD) should be used to describe dementia that occurs in the context of well-established Parkinson disease. In a practice setting the term that is most appropriate to the clinical situation should be used and generic terms such as Lewy body diseaseare often helpful. In research studies in which distinction needs to be made between DLB and PDD, the existing 1-year rule between the onset of dementia and parkinsonism continues to be recommended.

McKeith, I.G., Boeve, B.F., Dickson, D.W., Halliday, G., Taylor, J.P., Weintraub, D., Aarsland, D., Galvin, J., Attems, J., Ballard, C.G. and Bayston, A., 2017. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. *Neurology*, *89*(1), pp.88-100.

Investigations

Structural:

MRI – relative preservation of MTL (vs AD)

Functional:

DAT Scan – reduced dopamine uptake (Sensitivity 78%; specificity 90%) (McKeith et al, 2007) Occipital hypo-perfusion (SPECT) / hypometabolism (PET)

EEG:

Prominent slow wave activity

DAT Scan

Normal and abnormal 123I-FP-CIT SPECT images

Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study

Ian McKeith, John O'Brien, Zuzana Walker, Klaus Tatsch, Jan Booij, Jacques Darcourt, Alessandro Padovani, Raffaele Giubbini, Ubaldo Bonuccelli, Duccio Volterrani, Clive Holmes, Paul Kemp, Naji Tabet, Ines Meyer, Cornelia Reininger

Volume 6, Issue 4, 2007, 305–313 http://dx.doi.org/10.1016/S1474-4422(07)70057-1

Pharmacological Treatments

AChEIs are the main treatment option

Rivastigmine commonly used but little evidence of difference between drugs (Bhasin et al, 2007)

Cochrane suggests effect of AChEIs is unclear (Rolinski et al, 2012)

Dopaminergic agents not routinely used – variable and limited response (Molloy et al, 2005)

Prognosis

Higher mortality rate (vs AD) (Williams et al, 2006)

Faster cognitive decline (probably) (Rongve et al, 2016)

Parkinson's Disease Dementia (PDD)

20-50% during course of illness (Leroi et al, 2004)

Often associated with / risk factor for psychosis

M>F

1 year rule:

 \leq 12 months of parkinsonism = Lewy Body disease; if >12 months = Parkinson's disease dementia

Pathophysiology

Lewy body disease:

Pathology starts in medulla and olfactory bulbs Braak Stages

Substantia nigra (pars compacta) Dorsal nucleus of vagus nerve Nucleus basalis of Meynert (acetylcholine)

Clinical Presentation

Early dementia uncommon Occurs later in around 25%

Early stages some evidence of executive dysfunction Reduced verbal fluency Apathy

"Subcortical" presentation

Treatment

Rivastigmine commonly used Helpful for non-cognitive symptoms

Dopaminergic agents may worsen confusion and/or psychosis

Atypical Parkinsonian Syndromes

Sometimes referred to as **Parkinson-Plus Syndromes**

Multiple System Atrophy (MSA)

Progressive Supranuclear Palsy Syndrome (PSPS), variant phenutypes are PSP-RS, PSP-parkinsonism

Corticobasal Syndrome (CBS)

PSPS and CBS - same tauopathies as in many cases of FTD Clinical overlap in speech/behaviour problems present in the nfvPPA

Multiple System Atrophy (MSA)

Combination of features:

Parkinsonism

Cerebellar ataxia (e.g. intention tremor*)

Autonomic dysfunction

MSA-P: predominant parkinsonism resembling idiopathic PD (IPD). Striato-nigral denegeneration

MSA-C: predominant cerebellar signs with UMN signs Olivopentocerebellar atrophy

Shy-Drager Syndrome (primary autonomic failure)

Multiple System Atrophy

Progresses more rapidly than IPD

Early gait disturbance, falls, marked orthostatic hypotension should raise suspicion of MSA Often have marked flexed posture with chin on chest (>IPD)

Overt dementia uncommon

May be caused by abnormal synuclein-derived prion (Prusiner et al, 2015)

Progressive Supranuclear Palsy (PSP)

Symmetrical akinetic-rigid syndrome ("tauopathy")

Sporadic

Onset 6th decade; M=F

Bradykinesia; rigidity (axial>limb) Vertical gaze palsy

Postural and gait instability / falls Dystonic posture – flexion of trunk; neck extension (retrocollis)

Progressive supranuclear palsy

Early cognitive changes:

- Apathy
- Reduced fluency
- Impairment in abstract thinking
- Utilisation/imitation behaviours
- Personality change
- May also see language changes
- Speech apraxia / non-fluent aphasia
- Frontal release signs

Corticobasal syndrome (CBS)

Usually sporadic; onset typically early 60s M=F

Tauopathy

Asymmetrical degeneration of number of brain areas – frontoparietal cortical & basal ganglia and other subcortical nuclei

Swollen achromatic tau-positive Pick cells are characteristics

Corticobasal syndrome

Diverse presentations

Asymmetric rigidity & apraxia Dystonia / myoclonus "Alien limb" / cortical sensory loss

Visuospatial dysfunction (inc. Balint's syndrome) Executive dysfunction Supranuclear gaze palsy

Neuroimaging (MRI)

Multiple system atrophy

- The hot-cross bun sign (Increased signal in tegmentum on T2)
- Cerebellar atrophy

Progressive supranuclear palsy

- Midbrain atrophy
- The "Hummingbird Sign"

Corticobasal degeneration

Asymmetric cortical atrophy (late finding)

Case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 5465

By Dr Laughlin Dawes radpod.org, CC BY 3.0, https://commons.wikimedia.org/ w/index.php?curid=3713329

Huntington's Disease

- Epidemiology & aetiology
- Pathophysiology
- **Clinical presentation**
- Investigations
- Treatment
- Prognosis

Huntington's Disease

Neuropsychiatric disorder Triad of symptoms

Worldwide variation in prevalence Europe **4-12 per 100 000**

(Harper, 1992; Paulsen, 2001; Spinney 2010)

Motor

- Chorea
- Clumsiness
- Gait changes
- Speech changes

Cognitive

- Impaired concentration
- Executive
- Behavioural

Psychiatric

- Anxiety
- Depression
- Psychosis
- Suicidal ideation

Autosomal dominant disorder (M=F) Expansion in **CAG repeat** (≥36 codons) (Huntingtin gene; short-arm chromosome 4) Anticipation (esp. paternal transmission)

Pathophysiology

Aggregation of huntingtin protein

Reduced GABA in basal ganglia (Perry et al, 1973) Reduced striatal acetylcholine Relative excess of dopamine

- striatal movement disorder
- mesolimbic psychosis

Huntington's Disease

Typically 4th or 5th decade Symptom cluster can vary with age of onset Neurological or psychiatric features can be first presentation

Neurological:

Choreiform movements Dysarthria Motor impersistence / "Milkmaid's Grip"

Psychiatric:

Mood disorder 38% (depression>mania) (Jauhar & Ritchie, 2010) Anxiety Psychotic features (often with increasing cognitive impairment) Irritability & changes in behaviour Apathy

Cognitive changes

Insidious decline

"Subcortical" pattern of impairment

Apathy and inefficiency

Poor attention / distractibility

Early executive changes (esp. planning; rigidity; impulsivity)

No early language changes

Visuospatial function largely intact

Memory impairment (2^o to attentional deficits)

Other considerations

Elevated suicide risk in HD (4-6x) (Rosenblatt et al, 2000)

Behavioural changes: (Craufurd et al, 2001, cited in Jauhar & Ritchie, 2010)

- 1. Apathy
- 2. Irritability
- 3. Depression

Huntington's Disease - investigations

Genetic testing (symptomatic individuals only outside genetic centres)

Neuroimaging:

Atrophy & dilated ventricles (predominantly frontal) Caudate atrophy

Functional imaging:

PET ⁽¹⁸FDG) early caudate hypometabolism (Kuhl, et al, 1982)

EEG:

Reduced or absent alpha Can be normal (unusual)

Case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 8052

Huntington's Disease - Treatment

Symptomatic only (always consider if symptom needs treating)

Chorea

- Tetrabenazine (dopamine depletion)
- Low-dose antipsychotic

Rigidity

- PD medication; may precipitate/worsen psychosis & chorea
- Benzodiazepines can be useful

Depression /anxiety / psychosis

- Largely as per usual treatment
- Caution re increased risk of EPSEs
- ECT well tolerated

Huntington's Disease - Prognosis

Mean duration 15-20 years (Lovestone, 2009)

NHS Health Education England

Selected Reading

Ferrari, R., Manzoni, C. and Hardy, J., 2019. Genetics and molecular mechanisms of frontotemporal lobar degeneration: an update and future avenues. *Neurobiology of aging*, 78, pp.98-110.

Rascovsky, K., Hodges, J.R., Knopman, D., Mendez, M.F., Kramer, J.H., Neuhaus, J., Van Swieten, J.C., Seelaar, H., Dopper, E.G., Onyike, C.U. and Hillis, A.E., 2011. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. *Brain*,

134(9), pp.2456-2477.

Román, G.C., Tatemichi, T.K., Erkinjuntti, T., Cummings, J.L., Masdeu, J.C., Garcia, J.H., Amaducci, L., Orgogozo, J.M., Brun, A., Hofman, A. and Moody, D.M., 1993. Vascular dementia: diagnostic criteria for research studies: report of the NINDS-AIREN International Workshop. *Neurology*, *43*(2), pp.250-250.

> Gorno-Tempini, M.L., Hillis, A.E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S.F., Ogar, J.M., Rohrer, J.D., Black, S., Boeve, B.F. and Manes, F., 2011. Classification of primary progressive aphasia and its variants. *Neurology*, *76*(11), pp.1006-1014.

Please provide feedback/suggestions on this presentation to the module lead <u>mark.worthington@lancashirecare.nhs.uk</u>

- A 38 year old man presents with a seizure on a background of increasing memory impairment, migraines, apathy and unsteady gait.
 Which genetic mutation is most likely?
- A. NOTCH3
- B. MAPT
- C. Presenilin-1
- D. C9ORF72
- E. SNCA

- A 38 year old man presents with a seizure on a background of increasing memory impairment, migraines, apathy and unsteady gait.
 Which genetic mutation is most likely?
- A. NOTCH3
- B. MAPT
- C. Presenilin-1
- D. C9ORF72
- E. SNCA

NHS Health Education England

- 2. A 62 year old woman is struggling with poor balance and muscle spasms. She has difficulty controlling her left hand which she descries as feeling 'out of control'. MRI brain shows asymmetrical atrophy of the superior parietal lobe. Which of the following is most closely associated with the primary diagnosis?
- A. Logopenic PPA
- B. Semantic PPA
- C. Posterior cortical atrophy
- D. Non-fluent PPA
- E. Cerebral amyloid angiopathy

NHS Health Education England

- 2. A 62 year old woman is struggling with poor balance and muscle spasms. She has difficulty controlling her left hand which she descries as feeling 'out of control'. MRI brain shows asymmetrical atrophy of the superior parietal lobe. Which of the following is most closely associated with the primary diagnosis?
- A. Logopenic PPA
- B. Semantic PPA
- C. Posterior cortical atrophy
- D. Non-fluent PPA
- E. Cerebral amyloid angiopathy

- A man with Parkinson's Disease develops psychotic symptoms.
 Which antipsychotic drug treatment has the best evidence base?
 - A. Quetiapine
 - B. Amisulpride
 - C. Haloperidol
 - D. Risperidone
 - E. Clozapine

NHS Health Education England

Old Age Module MCQs

- A man with Parkinson's Disease develops psychotic symptoms.
 Which antipsychotic drug treatment has the best evidence base?
 - A. Quetiapine
 - B. Amisulpride
 - C. Haloperidol
 - D. Risperidone

E. Clozapine

Zhang, H., Wang, L., Fan, Y., Yang, L., Wen, X., Liu, Y. and Liu, Z., 2019. Atypical antipsychotics for Parkinson's disease psychosis: a systematic review and meta-analysis. *Neuropsychiatric Disease and Treatment*, *15*, p.2137.
NHS Health Education England

Old Age Module MCQs

- 4. A 43 year old gentleman presents with unwanted movements that started in his hands and now involve his limbs and face. He is also struggling with low mood and obsessional thoughts. Genetic analysis reveal multiple CAG repeats on chromosome 4. A brain MRI is most likely to show:
 - A. Caudate atrophy
 - B. Cerebellar atrophy
 - C. Multiple white matter intensities
 - D. Putaminal infarct
 - E. Lacunar infarct

NHS Health Education England

Old Age Module MCQs

4. A 43 year old gentleman presents with unwanted movements that started in his hands and now involve his limbs and face. He is also struggling with low mood and obsessional thoughts. Genetic analysis reveal multiple CAG repeats on chromosome 4. A brain MRI is most likely to show:

A. Caudate atrophy

- B. Cerebellar atrophy
- C. Multiple white matter intensities
- D. Putaminal infarct
- E. Lacunar infarct

Old Age Module MCQs

- 5. A 70 year old man has been given a diagnosis of Lewy Body Dementia. According to recognised criteria, which of these is a core clinical feature?
- A. Hyposmia
- B. REM sleep disorder
- C. Severe sensitivity to antipsychotic agents
- D. Postural instability
- E. Orthostatic hypotension

Old Age Module MCQs

- 5. A 70 year old man has been given a diagnosis of Lewy Body Dementia. According to recognised criteria, which of these is a core clinical feature?
- A. Hyposmia
- B. REM sleep disorder
- C. Severe sensitivity to antipsychotic agents
- D. Postural instability
- E. Orthostatic hypotension

Old Age Module

Any Questions?

Thank you